Abstract:
The exponential growth of lithium-ion batteries (LIBs) waste, coupled with the severe environmental and economic limitations of conventional pyrometallurgical and hydrometallurgical recycling, necessitates sustainable alternatives. Deep eutectic solvents (DESs) have emerged as promising green solvents for spent LIBs recycling due to their tunability, low cost, low volatility, and potential biodegradability. This review elucidates the fundamental chemical principles governing DESs, particularly their hydrogen-bond-driven self-assembly and structure-property-performance relationships. We critically analyze recent advances in the rational design of DESs for efficient and selective metal leaching, separation, and direct cathode regeneration from spent LIBs. Key design strategies include component engineering (e.g., binary/ternary HBA/HBD combinations, water/additive modulation), coordination environment regulation,and reducibility modulation targeting specific cathode chemistries (LCO, NCM, LFP). Furthermore, we evaluate the greenness and technoeconomic viability of DESs processes, highlighting their potential for lower energy consumption, reduce demissions, and high-value product regeneration. Despite impressive lab-scale achievements, challenges in scalability, DESs regeneration, and complex waste stream handling persist. Future research must bridge fundamental understanding with industrial implementation to realize the full potential of DESs for securing the critical materials supply chain essential for an electrified future.
锂离子电池(LIBs)废弃物的指数式增长,加之传统火法冶金与湿法冶金回收方式在环境与经济上的严重局限性,迫切需要可持续的替代方案。深共熔溶剂(DESs)因其可调控性、低成本、低挥发性以及潜在的生物可降解性,已成为废旧锂电池回收的有前景的绿色溶剂。本综述阐明了支配 DESs 的基本化学原理,特别是其由氢键驱动的自组装机制以及结构–性质–性能之间的关系。我们重点评述了近年来在 DESs 的合理设计方面取得的进展,以实现对废旧锂电池中金属的高效选择性浸出、分离以及正极材料的直接再生。主要的设计策略包括组分工程(如二元/三元 HBA/HBD 组合、水/添加剂调控)、配位环境调节以及针对特定正极化学体系(LCO、NCM、LFP)的还原性调控。此外,我们评估了 DESs 工艺的绿色性与技术经济可行性,强调了其在降低能耗、减少排放以及高价值产物再生方面的潜力。尽管在实验室规模已取得显著成果,但在规模化、DESs 再生以及复杂废物流处理方面仍面临挑战。未来研究必须在基础理解与工业应用之间架起桥梁,以充分发挥 DESs 在保障电气化未来所需关键材料供应链中的潜力。